
Pak.j.stat.oper.res.  Vol.16  No. 4 2020 pp 675-688  DOI: http://dx.doi.org/10.18187/pjsor.v16i4.2339 
 

 
The Three-parameters Marshall-Olkin Generalized Weibull Model with Properties and Different Applications to Real Data Sets 

 
675 

 

 

 

 

The Three-parameters Marshall-Olkin Generalized 

Weibull Model with Properties and Different 

Applications to Real Data Sets 
 

Mohamed G. Khalil1* and Wagdy M. Kamel2 
 

* Corresponding Author 

 

 
 

  
1Department of Statistics, Mathematics and Insurance, Benha University, Benha, Egypt. hndaoy@gmail.com  
2Department of Statistics, Mathematics and Insurance, Tanta University, Tanta, Egypt. 
wagdykamel80@yahoo.com  

 

 

Abstract 

 

A new three-parameter life parametric model called the Marshall-Olkin generalized Weibull is defined and studied. 

Relevant properties are mathematically derived and analyzed. The new density exhibits various important 

symmetric and asymmetric shapes with different useful kurtosis. The new failure rate can be “constant”, “upside 

down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically increasing”, “J-HRF” and 

“monotonically decreasing”. The method of maximum likelihood is employed to estimate the unknown parameters. 

A graphical simulation is performed to assess the performance of the maximum likelihood estimation. We checked 

and proved empirically the importance, applicability and flexibility of the new Weibull model in modeling various 

symmetric and asymmetric types of data. The new distribution has a high ability to model different symmetric and 

asymmetric types of data. 
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1. Introduction 

Consider a baseline reliability function (RF) of the Weibull (W) distribution (Weibull (1951)) 

 

𝐺𝜁1
(𝑤) = 1 − 𝐺𝜁1

(𝑤) =   𝑒𝑥𝑝(−𝑤𝜁1),                                                           (1) 

with probability density function (PDF) 

 

𝑔𝜁1
(𝑤) = 𝜁1𝑤𝜁1−1 𝑒𝑥𝑝(−𝑤𝜁1),                                                                 (2) 

with shape parameter  𝜁1 > 0 . The RF of the Marshall-Olkin Generalized-G (MOG-G) family of distributions is 

defined by 

𝐹𝛿,𝜁2,𝜓(𝑤) = 1 − 𝐹𝛿,𝜁2,𝜓(𝑤) = 1 − {[1 − 𝐺𝜓(𝑤)𝜁2]/[1 − �̇�𝐺𝜓(𝑤)𝜁2]}|𝑤∈ℜ, 𝛿>0,                    (3) 

where  𝛿  and  𝜁2  are two positive shape parameters. The corresponding PDF of (3) is given by 

𝑓𝛿,𝜁2,𝜓(𝑤) = 𝛿𝜁2𝑔𝜓(𝑤)𝐺𝜓(𝑤)𝜁2−1[1 − �̇�𝐺𝜓(𝑤)𝜁2]
−2

|𝑤∈ℜ, 𝛿>0.                                  (4) 

In this paper, we propose and study a new generated Weibull model called the Marshall-Olkin generalized Weibull 

(MOGW) distribution and give a comprehensive description of its mathematical properties. In fact, the MOGW model 

is motivated by its importance flexibility in application. By means of two applications, it is noted that the MOGW 

model provides better fits than other models each having the same number of parameters. 

 

2. The new model and its justification 

By inserting (1) in (3), we obtain the cumulative distribution function (CDF) of the MOG-G family    
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𝐹𝛿,𝜁1,𝜁2
(𝑤) =

1−𝑒𝑥𝑝(−𝜁2𝑤𝜁1)

1−�̇� 𝑒𝑥𝑝(−𝜁2𝑤𝜁1)
|𝑤>0, 𝛿,𝜁1,𝜁2>0,                                                       (5) 

where 𝛿  and 𝜁2  are two positive shape parameters representing the different patterns of the MOGW distribution. The 

corresponding PDF of (5) is given by 

𝑓𝛿,𝜁1,𝜁2
(𝑤) =

𝛿𝜁2𝜁1𝑤𝜁1−1 𝑒𝑥𝑝(−𝜁2𝑤𝜁1)

[1−�̇� 𝑒𝑥𝑝(−𝜁2𝑤𝜁1)]
2 |𝑤>0, 𝛿,𝜁1,𝜁2>0.                                                     (6) 

Henceforth,  𝑊 ∼  MOGW( 𝛿, 𝜁1, 𝜁2 ) denotes a random variable having density function (6). The MOGW distribution 

is motivated by the following motivations. Suppose a system is made up of  𝑍  independent components in series, 

where 𝑍 is a random variable with geometric distribution and probability mass function  

Pr(𝑍 = 𝑧) = 𝛿�̇� 𝑧−1, 𝑧 = 1,2, . . . and 𝛿 ∈ (0,1). 
Suppose that random variables  𝑤1 ,  𝑤2, . .. , represent the lifetimes of each component and suppose that they have the 

generalized W distribution. Then a random variable  

𝑌 = 𝑚𝑖𝑛(𝑤1, 𝑤2, … , 𝑤𝑍) 

represents the time to the first failure with CDF (5).Form another view, consider now a parallel system with  𝑍  

independent components and suppose that a random variable  𝑍  has geometric distribution with the probability mass 

function  

𝑃(𝑍 = 𝑧) = 𝛿−1�̇�𝑧−1, 𝑧 = 1,2, . . . and 𝛿 > 1. 
Let  𝑤1 ,  𝑤2, . ..  as before representing the lifetimes of each component and suppose that they have the generalized 

W distribution. Then a random variable  

𝑇 = 𝑚𝑎𝑥(𝑤1, 𝑤2, . . . , 𝑤𝑍), 
represents the lifetime of the system. Therefore, the random variable  𝑇  follows (5). The reliability function (rf), 

hazard rate function (HRF) and cumulative hazard rate function (cHRF) of  𝑤  are, respectively, given by  𝑅(𝑤) =
𝛿 𝑒𝑥𝑝(−𝜁2𝑤𝜁1)

1−�̇� 𝑒𝑥𝑝(−𝜁2𝑤𝜁1)
,  𝜏(𝑤) =

𝜁2 𝜁1𝑤𝜁1−1

[1−�̇� 𝑒𝑥𝑝(−𝜁2𝑤𝜁1)]
, and  𝐻(𝑤) = 𝑙𝑜𝑔 [

1−�̇� 𝑒𝑥𝑝(−𝜁2𝑤𝜁1)

𝛿 𝑒𝑥𝑝(−𝜁2𝑤𝜁1)
].  The MOGW distribution includes the 

generalized Weibull (GW) distribution when  𝛿 = 1 . For  𝜁2 = 1 , we obtain the MO Weibull (MOW) model. For  

𝜁1 = 1 , we have the MOG-exponential (MOGE) distribution. For  𝜁1 = 2 , we obtain the MOG-Rayleigh (MOGR) 

distribution. Figure 1 gives some plots of the MOGW PDF (left) and HRF (right). From Figure 1 (left) we conclude 

that the PDF MOGW distribution have various symmetric and asymmetric shapes with different kurtosis. From Figure 

1 (right) we note that the HRF MOGW model can be “constant”, “upside down-constant (reversed U-HRF)”, 

“increasing then constant”, “monotonically increasing”, “J-HRF” and “monotonically decreasing”.  
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Figure 1: Plots of the MOGW PDF (left) and plots of the MOGW HRF (right) 
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The main justification for the practicality of the new lifetime model is based on the wider use of the Weibull model. 

We are also motivated to introduce the new model since it exhibits increasing, decreasing and bathtub hazard rates. 

The new model can be viewed as a mixture of the exponentiated W distribution. It can also be considered as a suitable 

model for fitting the symmetric, left skewed, right skewed, and unimodal data. We prove empirically the importance 

and flexibility of the new model in modeling two types of lifetime data, the new model provides adequate fits as 

compared to other Weibull models with small values for Cramér-von Mises  (𝐶(statistic))  and the Anderson-Darling  

(𝐴(statistic)) and it is much better than the Odd Lindley Exponentiated Weibull, Poisson Topp Leone Weibull, the Burr 

X Exponentiated Weibull, Marshall Olkin extended Weibull, Gamma Weibull, Weibull-Fréchet, Kumaraswamy 

Weibull, Transmuted modified Weibull, Beta Weibull, McDonald Weibull, Kumaraswamy transmuted Weibull, 

transmuted exponentiated generalized Weibull and Modified beta Weibull models so the new good is a good 

alternative to these models for modeling the aircraft windshield data, as well as the new model is much better than 

Weibull, Modified beta Weibull, Transmuted modified Weibull, transmuted additive Weibull, exponentiated 

transmuted generalized Rayleigh models for modeling cancer patients data. We also conclude that the proposed model 

is much better than the Odd Lindley exponentiated Weibull, gamma exponentiated-exponential, odd Weibull Weibull 

models, and a good alternative to these models in modeling survival times of Guinea pigs. Finally, the proposed model 

is much better than the Odd Lindley exponentiated Weibull, exponentiated Weibull, transmuted Weibull, odd Log 

Logistic Weibull models, and a good alternative to these models in modeling glass fibers data. 

 

3. Mathematical properties 

3.1 Linear representation 

First, we have 

1 − [𝑒𝑥𝑝(−𝑤𝜁1)]
𝜁2

= 1 + ∑(−1)�̇�

∞

𝜅=0

(
𝜁2

𝜅
) [𝑒𝑥𝑝(−𝑤𝜁1)]

𝜅
= ∑[𝜁1]𝜅

∞

𝜅=0

[𝑒𝑥𝑝(−𝑤𝜁1)]
𝜅

|�̇�=𝜅+1, 
 

(7) 

 

where [𝜁1]0 = 2 and [𝜁1]𝜅 = (−1)�̇� (
𝜁2

𝜅
) ∀ 𝜅 ≥ 1 𝑎nd 

1 − �̇� − [𝑒𝑥𝑝(−𝑤𝜁1)]
𝜁2

= 1 − �̇� − ∑(−1)𝜅

∞

𝜅=0

(
𝜁2

𝜅
) [𝑒𝑥𝑝(−𝑤𝜁1)]

𝜅
= ∑ 𝜂𝜅

∞

𝜅=0

[𝑒𝑥𝑝(−𝑤𝜁1)]
𝜅

, 
 

(8) 

where  𝜂0 = 𝛿  and  𝜂𝜅 = �̇�(−1)�̇� (
𝜁2

𝜅
) using (7) and (8) the CDF of the MOGW model in (5) can be expressed as 

𝐹𝛿,𝜁1,𝜁2
(𝑤) = ∑[𝜁1]𝜅

∞

𝜅=0

[𝑒𝑥𝑝(−𝑤𝜁1)]
𝜅

÷ ∑ 𝜂𝜅

∞

𝜅=0

[𝑒𝑥𝑝(−𝑤𝜁1)]
𝜅

= ∑ 𝑡𝜅

∞

𝜅=0

[𝑒𝑥𝑝(−𝑤𝜁1)]
𝜅

, 

where 𝑡0 =
[𝜁1]0

𝜂0
, and for  𝜅 ≥ 1  we have 𝑡𝜅 =

1

𝜂0
(𝜁1𝜅 −

1

𝜂0
∑ 𝜂𝑟

𝜅
𝑟=1  𝑡𝜅−𝑟), the PDF of the MOGW model can also be 

expressed as a mixture of expW densities. By differentiating  𝐹𝛿,𝜁1,𝜁2
(𝑤) , we obtain the same mixture representation 

𝑓𝛿,𝜁1,𝜁2
(𝑤) = ∑ 𝑡�̇�

∞

𝜅=0

𝜋�̇�(𝑤)|�̇�=𝜅+1, 
 

(9) 

where  𝜋𝜔(𝑤)  is the exp W PDF with power parameter  (𝜔) . Equation (9) reveals that the MOGW PDF is a linear 

combination of exp W PDFs. Thus, some structural properties of the new family such as the ordinary and incomplete 

moments and generating function can be immediately obtained from well-established properties of the exp W 

distributions.   

   

3.2 Moments and generating function 

The 𝑟𝑡ℎ ordinary moment of  𝑊  is given by  𝜇𝑟
′ = 𝐸(𝑤𝑟) =   ∫

∞

−∞
𝑤𝑟𝑓𝛿,𝜁1,𝜁2

(𝑤)𝑑𝑤, then we obtain  

𝜇𝑟
′ = 𝛤 (

𝑟

𝜁1

+ 1) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,𝑟)

|𝑟>−𝜁1
, 

 

(10) 

where  𝛻𝜅,ℎ
(�̇�,𝑟)

= 𝑡�̇�𝛻ℎ
(�̇�,𝑟)

 and 𝛻𝑚
(�̇�,𝜏)

=
(�̇�)(−1)𝑚(

𝜅
𝑚

)

(𝑚+1)
(

𝜏
𝜁1

+1)
, setting 𝑟 = 1, 2, 3, 4  in (10) we get 

𝐸(𝑤) = 𝜇1
′ = 𝛤 (

1

𝜁1

+ 1) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,1)

|1>−𝜁1
, 𝐸(𝑤2) = 𝜇2

′ = 𝛤 (
1

𝜁1

+ 1) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,2)

|2>−𝜁1
, 
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𝐸(𝑤3) = 𝜇3
′ = 𝛤 (

3

𝜁1
+ 1) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,3)

|3>−𝜁1
 and 𝐸(𝑤4) = 𝜇4

′ = 𝛤 (
4

𝜁1
+ 1) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,4)

|4>−𝜁1
. 

The last integration can be computed numerically for most parent distributions. The skewness and kurtosis measures 

can be calculated from the ordinary moments using well-known relationships. The moment generating function (MGF)  

𝑀𝑊(𝑡) = 𝐸(𝑒𝑥𝑝(𝑡𝑊)) of  𝑊. Clearly, the first one can be derived from equation (9) as  

𝑀𝑊(𝑡) = 𝛤 (
𝑟

𝜁1

+ 1) ∑

𝜅,ℎ,𝑟=0

∞

𝛻𝜅,ℎ,𝑟
(�̇�,𝑟)

|𝑟>−𝜁1
, 

where  𝑟! 𝛻𝜅,ℎ,𝑟
(�̇�,𝑟)

=   𝑡𝑟 𝛻𝜅,ℎ
(�̇�,𝑟)

/𝑟!. 

 

3.3 Incomplete moments 

The main applications of the first incomplete moment refer to the mean deviations and the Bonferroni and Lorenz 

curves. These curves are very useful in economics, reliability, demography, insurance and medicine. The 𝑠𝑡ℎ 

incomplete moment, say 𝐼𝑠(𝑡) , of  𝑊  can be expressed from (9) as  

𝐼𝑠(𝑡) = ∫ 𝑤𝑠
𝑡

−∞

𝑓𝛿,𝜁1,𝜁2
(𝑤)𝑑𝑤 = 𝛾 (

𝑟

𝜁1

+ 1, (
1

𝑡
)

−𝜁1

) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,𝑟)

|𝑠>−𝜁1
, 

setting  𝑠 = 1,2,3,4  in 𝐼𝑠(𝑡) we get 

𝐼1(𝑡) = 𝛾 (
1

𝜁1

+ 1, (
1

𝑡
)

−𝜁1

) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,1)

|1>−𝜁1
, 𝐼2(𝑡) = 𝛾 (

2

𝜁1

+ 1, (
1

𝑡
)

−𝜁1

) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,2)

|2>−𝜁1
, 

𝐼3(𝑡) = 𝛾 (
3

𝜁1
+ 1, (

1

𝑡
)

−𝜁1
) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,3)

|2>−𝜁1
 and 𝐼4(𝑡) = 𝛾 (

4

𝜁1
+ 1, (

1

𝑡
)

−𝜁1
) ∑

𝜅,ℎ=0

∞

𝛻𝜅,ℎ
(�̇�,4)

|4>−𝜁1
. 

 

3.4 Probability weighted moments 

The PWM method can generally be used for estimating parameters of a distribution whose inverse form cannot be 

expressed explicitly. The (𝑟, 𝑠)𝑡ℎ PWM of  𝑊  following the MOGW distribution, say  𝜌𝑠,𝑟 , is formally defined by  

𝜌𝑠,𝑟 = 𝐸{𝑤𝑠𝐹𝛿,𝜁1,𝜁2
(𝑤)𝑟} = ∫ 𝑤𝑠

∞

−∞

𝐹𝛿,𝜁1,𝜁2
(𝑤)𝑟𝑓𝛿,𝜁1,𝜁2

(𝑤)𝑑𝑤. 

Using equations (5) and (6), we can write  𝑓𝛿,𝜁1,𝜁2
(𝑤)𝐹𝛿,𝜁1,𝜁2

(𝑤)𝑟 = ∑ 𝑤�̇�
∞
𝜅=0 𝜋�̇�(𝑤) where 

𝑤�̇� =
(−1)𝜅

𝜅! (�̇�)
∑ (−1)𝑖+𝑗

∞

𝑖,𝑗=0

(𝑖! 𝑗!)−1𝛿𝑖+1�̄�𝑗(𝑟)𝑖(−[𝑖 + 2])𝑗

𝛤([𝑖 + 𝑗 + 1]𝜁2)

𝛤([𝑖 + 𝑗 + 1]𝜁2 − 𝜅)
. 

Then, the  (𝑟, 𝑠)𝑡ℎ PWM of  𝑊  can be expressed as  𝜌𝑠,𝑟 = 𝛤 (
𝑠

𝜁1
+ 1) ∑ 𝛻𝜅,ℎ

(�̇�,𝑠)∞
𝜅,ℎ=0 |𝑠>−𝜁1

, where  𝛻𝜅,ℎ
(�̇�,𝑠)

= 𝑤�̇�𝛻ℎ
(�̇�,𝑠)

 . 

 

3.5 Residual life and reversed residual life functions 

The 𝑚𝑡ℎ moment of the residual life is 𝜈𝑚(𝑡) = 𝐸[(𝑤 − 𝑡)𝑚 | 𝑤 > 𝑡],  𝑚 = 1,2, …. The 𝑚𝑡ℎ moment of the residual 

life of  𝑊  is given by  𝜈𝑚(𝑡) =
∫ (𝑤−𝑡)𝑚∞
𝑡 𝑑𝐹𝛿,𝜁1,𝜁2

(𝑤)

1−𝐹𝛿,𝜁1,𝜁2
(𝑡)

. Therefore, 

𝜈𝑚(𝑡) = 𝛤 (
𝑚

𝜁1

+ 1, (
1

𝑡
)

−𝜁1

)
1

1 − 𝐹𝛿,𝜁1,𝜁2
(𝑡)

∑

𝜅,ℎ=0

∞

∑

𝑟=0

𝑚

𝛻𝜅,ℎ,𝑟
(�̇�,𝑚)(𝜈𝑚)

|𝑚>−𝜁1
, 

where  𝛻𝜅,ℎ,𝑟
(�̇�,𝑚)(𝜈𝑚)

(1 − 𝑡)−𝑚 = 𝛻𝜅,ℎ
(�̇�,𝑚)

. Another interesting function is the mean residual life (MRL) function or the 

life expectation at age  𝑡  defined by  𝜈1(𝑡) = 𝐸[(𝑤 − 𝑡)| 𝑤 > 𝑡] , which represents the expected additional life length 

for a unit which is alive at age  𝑡 . The MRL of  𝑊  can be obtained by setting  𝑚 = 1  in the last equation. The 𝑚𝑡ℎ 

moment of the reversed residual life is  𝑉𝑚(𝑡) = 𝐸[(𝑡 − 𝑤)𝑚 | 𝑤 ≤ 𝑡] for 𝑡 > 0 and 𝑚 = 1,2, … . Then, we obtain  

𝑉𝑚(𝑡) =
∫ (𝑡−𝑤)𝑚𝑡
0 𝑑𝐹𝛿,𝜁1,𝜁2

(𝑤)

𝐹𝛿,𝜁1,𝜁2
(𝑡)

. Then, the 𝑚𝑡ℎ moment of the reversed residual life of  𝑊 becomes 

𝑉𝑚(𝑡) = 𝛾 (
𝑚

𝜁1

+ 1, (
1

𝑡
)

−𝜁1

)
1

𝐹𝛿,𝜁1,𝜁2
(𝑡)

∑

𝜅,ℎ=0

∞

∑

𝑟=0

𝑚

𝛻𝜅,ℎ,𝑟
(�̇�,𝑚)(𝑉𝑚)

|𝑚>−𝜁1
, 

where  𝛻𝜅,ℎ,𝑟
(�̇�,𝑚)(𝑉𝑚)

= (−1)𝑟 (
𝑚
𝑟

) 𝑡𝑚−𝑟𝛻𝜅,ℎ
(�̇�,𝑚)

. The mean inactivity time (MIT) or mean waiting time (MWT) also called 

the mean reversed residual life function is given by  𝑀1(𝑡) = 𝐸[(𝑡 − 𝑤)| 𝑤 ≤ 𝑡] , and it represents the waiting time 
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elapsed since the failure of an item on condition that this failure had occurred in  (0, 𝑡) .The MIT of the MOGW 

distribution of distributions can be obtained easily by setting  𝑚 = 1  in the above equation. 

 

3.6 Order statistics 

Suppose  𝑤1, 𝑤2, … , 𝑤𝑛  is an observed random sample from any MOGW distribution. Let  𝑤𝑖:𝑛  denote the 𝑖𝑡ℎ order 

statistic. The PDF of  𝑊𝑖:𝑛  can be expressed as  

𝑓𝑖:𝑛(𝑤) =
𝑓𝛿,𝜁1,𝜁2

(𝑤)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑(−1)𝑗

𝑛−𝑖

𝑗=0

(
𝑛 − 𝑖

𝑗
) 𝐹𝛿,𝜁1,𝜁2

(𝑤)𝑗+𝑖−1. 

Following similar algebraic developments of Nadarajah et al. (2015), we can write the density function of  𝑊𝑖:𝑛  as  

𝑓𝑖:𝑛(𝑤) = ∑

∞

𝑟,𝜅=0

𝑏𝑟,𝜅𝜋𝑟+�̇�(𝑤), 
 

(11) 

where 𝑏𝑟,𝜅 =
𝑛!(𝑟+1)(𝑖−1)!𝑡𝑟+1

(𝑟+�̇�)
∑𝑛−𝑖

𝑗=0

(−1)𝑗𝜉𝑗+𝑖−1,𝜅

(𝑛−𝑖−𝑗)!𝑗!
, 𝑡�̇�  is given in before and the quantities 𝜉𝑗+𝑖−1,𝜅 can be determined 

with 𝜉𝑗+𝑖−1,0 = 𝑤0
𝑗+𝑖−1

 and recursively for 𝜅 ≥ 1, 𝜉𝑗+𝑖−1,𝜅 = (𝜅𝑡0)−1 ∑ 𝑡𝑚
𝜅
𝑚=1  [𝑚(𝑗 + 𝑖) − 𝜅] 𝜉𝑗+𝑖−1,𝜅−𝑚. Equation 

(11) is the main result of this section. It reveals that the PDF of the MOGW order statistics is a linear combination of 

exp W density functions. So, several mathematical quantities of the MOGW order statistics such as ordinary, 

incomplete and factorial moments, mean deviations and several others can be determined from those quantities of the 

exp W distribution. For the MOGW model we have 𝐸(𝑤𝑖:𝑛
𝑞

) = 𝛤 (
𝑞

𝜁1
+ 1) ∑ 𝛻𝑟,𝜅,ℎ

(𝑟+�̇�,𝑞)∞
𝑟,𝜅,ℎ=0 |𝑞>−𝜁1

 where  𝛻𝑟,𝜅,ℎ
(𝑟+�̇�,𝑞)

=

𝑏𝑟,𝜅𝛻ℎ
(𝑟+�̇�,𝑞)

. 
 

4. Estimation 

Let  𝑤1, … , 𝑤𝑛  be a random sample from the MOGW distribution with parameters  𝛿, 𝜁2  and  𝜁1 . Let  𝛩 = (𝛿, 𝜁1, 𝜁2 )𝑇  

be the  3 × 1  parameter vector. For determining the MLE of  𝛩 , we have the log-likelihood function 

ℓ = ℓ(𝛩) = 𝑛 𝑙𝑜𝑔 𝛿 + 𝑛 𝑙𝑜𝑔 𝜁2 + 𝑛 𝑙𝑜𝑔 𝜁1 + (𝜁1 − 1) ∑

𝑖=1

𝑛

𝑙𝑜𝑔(𝑤𝑖) − 𝜁2 ∑

𝑖=1

𝑛

𝑤𝑖
𝜁1 − 2 ∑

𝑖=1

𝑛

𝑙𝑜𝑔 𝑠𝑖 , 

where  𝑠𝑖 = 1 − �̇� 𝑒𝑥𝑝(−𝜁2𝑤𝑖
𝜁1).  The components of the score vector are 

𝑈𝛿 =
𝑛

𝛿
− 2 ∑

𝑖=1

𝑛
𝑧𝑖

𝑠𝑖
, 𝑈𝜁2

=
𝑛

𝜁2
− ∑

𝑖=1

𝑛

𝑤𝑖
𝜁1 − 2�̇� ∑

𝑖=1

𝑛
𝑤𝑖

𝜁1𝑧𝑖

𝑠𝑖
, 

and 

𝑈𝜁1
=

𝑛

𝜁1

+ ∑

𝑖=1

𝑛

𝑙𝑜𝑔(𝑤𝑖) − 𝜁2 ∑

𝑖=1

𝑛

𝑤𝑖
𝜁1 𝑙𝑜𝑔( 𝑤𝑖) − 2�̇�𝜁2 ∑

𝑖=1

𝑛

𝑤𝑖
𝜁1𝑠𝑖

−1 𝑙𝑜𝑔( 𝑤𝑖)𝑧𝑖 . 

Setting the nonlinear system of equations  𝑈𝛿 = 𝑈𝜁2
=  and  𝑈𝜁1

= 0  and solving them simultaneously yields the 

MLEs. To solve these equations, it is usually more convenient to use nonlinear optimization methods such as the 

quasi-Newton algorithm to numerically maximize  ℓ . For interval estimation of the parameters, we obtain the  3 × 3  

observed information matrix 𝐉(𝛩) = {
𝜕2ℓ

𝜕𝑟𝜕𝑠
}    (for 𝑟, 𝑠 = 𝛿, ζ1, 𝜁2)whose elements can be computed numerically.  

 

5. Graphical assessment 

We perform a graphical simulation in order to assess of the finite sample behavior of the MLEs. The assessment was 

based on the following algorithm: 

I-Using the quantile function, we generate 1000 samples of size  𝑛  from the MOGW distribution and compute the 

MLEs for the 1000 samples.  

II -Compute the SEs of the MLEs for the 1000 samples.  

III -Compute the biases and mean squared errors given for all parameters. We repeated these steps for 𝑛 =

50, 100, … ,250, so computing biases, mean squared errors (MSEs) for  𝛿, ζ1, 𝜁2. 

 

Figure 2 shows how the three biases vary with respect to  𝑛. Figure 3 shows how the three MSEs vary with respect 

to  𝑛. From Figure 2 and 3, the biases for each parameter are generally “negative” and decrease to zero as  𝑛 → ∞ , 

the MSEs for each parameter decrease to zero as  𝑛 → ∞. 
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Figure 2: biases for all parameters. 
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Figure 3: Mean squared errors for all parameters. 

6. Applications 

In this section, we provide four real applications to show empirically its potentiality. In order to compare the fits of 

the MOGW distribution with other competing distributions, we consider 𝐶(statistic) and the Anderson-Darling  𝐴(statistic). 

The MLEs and its standard errors (SEs) are given in Table 1, Table 3, Table 5 and Table 7. The values of 𝐶(statistic)  

and 𝐴(statistic)  are listed in Table 2, Table 4, Table 6 and Table 8. The total time in test (TTT), probability- probability 

(P-P) plots, Estimated PDF (EPHF), EHRF for data sets I, II, III and IV of the proposed models are displayed in Figure 

4, Figure 5, Figure 6 and Figure 7. Some other extensions of the W distribution can also be used in this comparison, 

but are not limited to Alizadeh et al. (2017 and 2018), Yousof et al. (2016 a, b), Cordeiro et al. (2017a,b), Afify et al. 

(2016b), Brito et al. (2017), Yousof et al. (2017a-d), Korkmaz et al. (2018a), Yousof et al. (2018a,b), Aryal et al. 

(2017a,b) and Merovci et al. (2017 and 2020). Many symmetric and asymmetric real-life data can be found in Mansour 

et al. (2010a,d,e,f), Korkmaz et al. (2018b-d), Al-babtain et al. (2020a,b), Goual et al. (2019a,b), Yadav et al. (2020), 

Alizadeh et al. (2020a,b), Karamikabir et al. (2020) and Korkmaz et al. (2020). 

 

 

6.1 Modeling failure times data 
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The data consist of 84 observations. This data is recently analyzed by (Khalil et al. (2019) and Mansour et al. (2010b, 

c). In Table 1 and Table 2, we compared the fits of the MOGW distribution with the Odd Lindley exp W (OLEW), 

Burr-X exp W (BrXEW) (Khalil et al. (2019), MO- extended W (MOEW) (Ghitany et al. (2005)), Poisson Topp-

Leone W (PTLW), BetaW (BW) (Lee et al. (2007)), Kumaraswamy transmuted W (KwTW) (Afify et al. (2016a)), 

Transmuted-modified W (TMW) (Khan and King, (2013)), Gamma W (GamW) (Provost et al. (2011)), 

Kumaraswamy W (KwW) (Cordeiro et al. (2010)), W-Fréchet (W-Fr) (Afify et al. (2016c)), Modified-beta W (MBW) 

(Khan, (2015)) Mcdonald W  (McW) (Cordeiro et al. (2014)),  transmuted exp generalized W (TEGW) (Yousof et al. 

(2015)) models, whose PDFs (for  𝑤 > 0 ). The MOGW is the best model with 𝐶(statistic) = 0.0679 and 𝐴(statistic) =

0.5254.  

Table 1: MLEs and SEs for failure times data. 

Distribution                                   Estimates 

MOGW(𝛿, ζ1, 𝜁2)  27.592 1.264  1.0583   

 (57.29) (1.361) (0.513)   

BrXEW(a,b,𝜃) 0.6368 4.262 0.536   

  (0.36) (1.76) (0.10)   

OLEW(a,b,𝜃)  0.1594 0.732 0.765   

 (0.371) (1.78) (0.041)   

PTLW(a,b,𝜃) -5.782 4.229 0.658   

 (1.395) (1.167) (0.039)   

GamW(a,b,𝜃) 2.377 0.8481 3.534   

 (0.38) (0.001) (0.67)   

MOEW(a,b,𝜃) 488.90 0.283 1261.9   

 (189.36) (0.01) (351.1)   

BW(α, a,b,𝜃) 1.36 0.298 34.18 11.49  

 (1.00) (0.06) (14.84) (6.73)  

TMW(α, a,b,𝜃) 0.272 1 4.6×10⁻⁶ 0.469  

 (0:01) (5×10⁻⁵) (2×10⁻⁴) (0.17)  

WFr(α, a,b,𝜃) 630.9 0.302 416.1 1.166  

 (698) (0.03) (232.4) (0.36)  

KwW(α, a,b,𝜃) 14.43 0.204 34.660 81.85  

 (27.1) (0.04) (17.53) (52.0)  

TEGW(α,λ,a,b,𝜃) 4.257 0.153 0.0978 5.231 1173.3 

 (33.4) (0.017) (0.609) (9.79) (6.99) 

MBW(α,λ,a,b,𝜃) 10.15 0.163 57.417 19.39 2.004 

 (18.7) (0.02) (14.06) (10.02) (0.66) 

KwTW(α,λ,a,b,𝜃) 27.79 0.178 0.445 29.525 168.06 

 (33.4) (0.02) (0.609) (9.792) (129.2) 

McW(α,λ,a,b,𝜃) 1.940 0.306 17.686 33.639 16.721 

 (1.01) (0.045) (6.222) (19.99) (9.722) 

 

Table 2: 𝐶(statistic) and 𝐴(statistic) for failure times data. 

Distribution 𝐶(statistic) 𝐴(statistic) 

MOGW 0.0679 0.5254 

GamW 0.2553 1.9489 

OLEW 0.0723 0.6086 

BW 0.4652 3.2197 

BrXEW 0.0744 0.6420 

MBW 0.4717 3.2656 

PTLW 0.1402 1.1939 

TMW 0.8065 11.204 

MOEW 0.3995 4.4477 
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KwW 0.1852 1.5059 

KwTW 0.1640 1.3632 

McW 0.1986 1.5906 

TEGW 1.0079 6.2332 

WFr 0.2537 1.9574 

 

 

Figure 4: TTT plot, P-P plot, EPHF, EHRF for failure times data. 

6.2 Modeling cancer data 

This data set represents the remission times (in months) of a random sample of 128 bladder cancer patients as reported 

in Lee and Wang (2003). This data is recently analyzed by (Khalil et al. (2019) and Mansour et al. (2010b, c).We 

compare the fits of the MOGW distribution with other competitive models, namely: The TMW, MBW, transmuted 

additive W distribution (TAW) (Elbatal and Aryal, (2013)), exponentiated transmuted generalized Rayleigh (ETGR) 

(Afify et al. (2015)), and the Weibull distributions with corresponding densities (for  𝑤 > 0 ). Based on the figures in 

Table 4 we conclude that the proposed MOGW lifetime model is much better than the W, TMW, MBW, TAW, ETG-

R models with 𝐶(statistic) = 0.0672and 𝐴(statistic) = 0.4214. 

 

Table 3: MLEs and SEs for remission data. 
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Distribution Estimates 

W(α,β) 9.559 1.048    

 (0.85) (0.068)    

MOGW(𝛿, ζ1, 𝜁2) 0.6684 0.169 0.822   

 (0.126) (0.028) (0.003)   

ETG-R(α,a,b,𝜃) 7.3762 0.0473 0.0494 0.118  

 (5.39) (4×10⁻³) (0.036) (0.26)  

TMW(α,a,b,𝜃) 0.121 0.8955 0.0002 0.251  

 (0.024) (0.626) (0.011) (0.407)  

TAW(α,β, a,b,𝜃) 0.1139 0.972 3×10⁻⁵ 1.0065 -0.16 

 (0.032) (0.125) (6×10⁻³) (0.035) (0.28) 

MBW(α,β, a,b,𝜃) 0.1502 0.163 57.4167 19.39 2.004 

 (22.44) (0.044) (37.32) (13.5) (0.79) 

 

Table 4: 𝐶(statistic) and 𝐴(statistic) for remission data. 

Distribution 𝐶(statistic) 𝐴(statistic) 

MOGW 0.0672 0.4214 

ETG-R 0.3979 2.3608 

W 0.1055 0.6628 

TAW 0.1129 0.7033 

TMW 0.1251 0.7603 

MBW 0.1068 0.7207 

 

 

Figure 5: TTT plot, P-P plot, EPHF, EHRF for remission data set. 

 



Pak.j.stat.oper.res.  Vol.16  No. 4 2020 pp 675-688  DOI: http://dx.doi.org/10.18187/pjsor.v16i4.2339 
 

 
The Three-parameters Marshall-Olkin Generalized Weibull Model with Properties and Different Applications to Real Data Sets 

 
684 

 

6.3 Modeling survival times 

The second real data set corresponds to the survival times (in days) of 72 guinea pigs infected with virulent tubercle 

bacilli (see Bjerkedal (1960)). This data is recently analyzed by (Khalil et al. (2019) and Mansour et al. (2010b, c). 

We shall compare the fits of the MOGW distribution with those of other competitive models, namely: Odd Lindley 

exponentiated W (OLEW), the Odd WW (OWW) (Bourguignon et al. (2014)), the gamma exponentiated-exponential 

(GaE-E) (Ristic and Balakrishnan (2012)). Based on the figures in Table 6 we conclude that the proposed MOGW 

model is much better than all other models with 𝐶(statistic) = 0.0961 and 𝐴(statistic) = 0.6897. 

 

Figure 6: TTT plot, P-P plot, EPHF, EHRF for survival data. 

Table 5: MLEs and SEs for survival data. 

Distribution                    Estimates 

MOGW(𝛿, ζ1, 𝜁2) 0.0622  0.003  0.5686 

 (0.022) (0.001) (0.002) 

OWW(a,b,𝜃) 11.158 0.088 0.457 

 (4.545) (0.036) (0.08) 

GaE-E(a,b,𝜃) 2.114 2.601 0.008 

 (1.329) (0.560) (0.01) 

OLEW(a,b,𝜃) 0.0018 0.0716 0.2813 

 (0.0004) (0.025) (0.009) 
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Table 6: 𝐶(statistic) and 𝐴(statistic) for survival data. 

Distribution 𝐶(statistic) 𝐴(statistic) 

MOGW 0.096 0.689 

GaE-E 0.315 1.721 

OLEW 0.252 1.475 

OWW 0.449 2.476 

 

 

6.4 Modeling strengths data 

This data consists of 63 observations of the strengths of 1.5 cm glass fibers. This data is recently analyzed by (Khalil 

et al. (2019) and Mansour et al. (2010b, c). We shall compare the fits of the MOGW with the OLEW, EW, TW and 

OLLW. Based on the Table 8 we conclude that the proposed MOGW model is the best model with 𝐶(statistic) =

0.1630 and 𝐴(statistic) = 0.0925. 

 

 

 

 

Figure 7: TTT plot, P-P plot, EPHF, EHRF for strengths data. 
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Table 7: MLEs and SEs for strengths data. 

Distribution                    Estimates 

MOGW(𝛿, ζ1, 𝜁2) 2.950  0.212  4.4548 

 (1.016) (0.034) (0.003) 

EW(a,b,𝜃) 0.671 7.285 1.7180 

 (0.25) (1.71) (0.094) 

OLEW(a,b,𝜃) 0.508 2.534 1.7122 

 (0.39) (1.83) (0.096) 

OLLW(a,b,𝜃) 0.944 6.026 0.6159 

 (0.27) (1.35) (0.016) 

TW(a,b,𝜃) -0.501 5.149 0.6465 

 (0.27) (0.67) (0.024) 

 

Table 8: 𝐶(statistic) and 𝐴(statistic) for strengths data. 

Distribution 𝐶(statistic) 𝐴(statistic) 

MOGW 0.1630 0.0925 

OLLW 1.2364 0.2194 

OLEW 0.2711 1.49645 

TW 1.0358 0.1691 

EW 0.636 3.4840 

 

7. Concluding remarks 

This article presented a new three-parameter life parametric model called the Marshall-Olkin generalized Weibull 

(MOGW) model. Some of its relevant structural properties are derived and analyzed. The new density is expressed as 

a linear mixture of the exponentiated Weibull density. The density of the MOGW distribution exhibits various 

important symmetric and asymmetric shapes with different useful kurtosis. The HRF of the MOGW model can be 

“constant”, “upside down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically 

increasing”, “J-HRF” and “monotonically decreasing”. The maximum likelihood method is employed to estimate the 

unknown model parameters. A graphical simulation is performed to assess the performance of the maximum 

likelihood estimation biases, mean squared errors. It is noted that the three biases are generally “negative” and decrease 

to zero as  𝑛 → ∞ , the mean squared errors for each parameter decrease to zero as  𝑛 → ∞. We checked and proved 

empirically the importance, applicability and flexibility of the new Weibull model in modeling various symmetric and 

asymmetric types of data. The new distribution has a high ability to model different symmetric and asymmetric types 

of data. 
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